

Abstracts

Characterization and modeling of small-signal substrate resistance effect in RF CMOS (2002 [RFIC])

Yo-Sheng Lin, Shey-Shi Lu, Tai-Hsing Lee and Hsiao-Bin Liang. "Characterization and modeling of small-signal substrate resistance effect in RF CMOS (2002 [RFIC])." 2002 Radio Frequency Integrated Circuits (RFIC) Symposium 02. (2002 [RFIC]): 315-318.

A novel theory based on dual-feedback circuit methodology is proposed to explain the kink phenomenon of scattering parameter S₂₂ in deep submicrometer MOSFETs. Our results show that the output impedance of MOSFETs intrinsically shows a series RC circuit (for low substrate resistance) or a "shifted" series RC circuit (for very high substrate resistance) at low frequencies, and a parallel RC circuit at high frequencies. It is this inherent triple characteristic of the output impedance that causes the appearance of double kinks phenomenon of S₂₂ in a Smith chart. Our model can not only predict the behavior of S₂₂, but also calculate all S-parameters accurately. Experimental data of 0.25-/spl mu/m-gate MOSFETs are used to verify our theory. Excellent agreement between theoretical values and experimental data was found.

[Return to main document.](#)

Click on title for a complete paper.